Introduction	Spectral Methods	Two Dimensions	Schur Decomposition	Results	Acknowledgements
00	000	00	0		
0	000	0	0		

A Robust Spectral PDE Solver for Skinny Triangles

Aaron Yeiser

5/21/2016

Introduction	Spectral	Meth
•0	000	
0	000	

Two	Dim	ensic	ons
00			
0			

chur Decomposition

Results

Acknowledgements

Meshes Can Be Complicated

Fluid flow over an airfoil

Skinny Triangles

When a mesh has skinny triangles, finite element methods are typically numerically unstable.

Two skinny triangles

Introduction	Spectral Methods	Two Dimensions	Schur Decomposition	Results	A
00	000	00	0		
•	000	0	0		

Another Reason for a Robust Method: Computation Time

 $\mathsf{Remeshing.} \dots 2\%$

Remeshing Time \gg Solve Time

Introduction	Spectral Methods
00	•00
0	000

Гwo	Dimensions	
00		
2		

hur Decomposition

Results

Acknowledgements

Spectral Methods: A Basis

$$f(x) = \sum_{i} a_i \cdot g_i(x)$$

The spectral basis for an 8×8 block of a JPEG image

Introduction	Spectral Methods	Two Dimensions	Schur Decomposition	Results	Acknowledgement
00	000	00	0		
0	000	0	0		

Chebyshev Polynomials: A Good Spectral Basis

$$T_n(x) = \cos(n \arccos(x)), \quad -1 \le x \le 1$$

Introduction Spectral Met	hods Two Dimensions	Schur Decomposition	Results	Acknowledgements
00 000	00	0		
0 000	0	0		

Monomials are a troublesome basis...

... while 1,000,000-degree Chebyshev expansions have virtually no loss of precision!

Introduction	Spectral Methods	Two Dimensions	Schur Decomposition	Results	Acknowledgements
00	000	00	0		
0	● 00	0	0		

Discrete Differential Operators

Differential Equation ⇔ Discrete Linear Operator

$$y(x) = \sum_{i} y_{i}T_{i}(x), \qquad \vec{y} = \begin{bmatrix} y_{0} \\ y_{1} \\ \vdots \end{bmatrix}$$
$$f(x) = \sum_{i} f_{i}C_{i}^{(1)}(x), \qquad \vec{f} = \begin{bmatrix} f_{0} \\ f_{1} \\ \vdots \end{bmatrix}$$
$$D_{1}\vec{y} = \vec{f} \quad \Leftrightarrow \quad \frac{dy}{dx} = f$$

 $C_n^{(\lambda)}$ are ultraspherical polynomials.

Introduction	Spectral Methods	Two Dimensions	Schur Decomposition	Results	Acknowledgements
00	000	00	0		
0	000	0	0		

Differential Equations

$$\frac{du}{dx} = f \quad \to \quad D_1 \vec{u} = \vec{f}$$

$$\frac{du}{dx} + u = f \quad \to \quad (D_1 + S_0) \, \vec{u} = \vec{f}$$

$$\frac{d^2u}{dx^2} - 3\frac{du}{dx} + 2u = f \quad \to \quad (D_2 - 3S_1D_1 + 2S_1S_0)\,\vec{u} = \vec{f}$$

 S_k converts a vector from the basis of $C^{(k)}$ to $C^{(k+1)}$ and S_0 converts vectors from a basis of T to a basis of $C^{(1)}$

Introduction	Spectral Methods	Two Dimensions	Schur Decomposition	Results	Acknowledgemen
00	000	00	0		
0	000	0	0		

Boundary Conditions

$$\frac{d^2u}{dx^2} = f, \quad u(-1) = lbc, \quad u(1) = rbc$$

 $T_n(1) = 1, \qquad T_n(-1) = (-1)^n$

Introduction	Spectral Methods	Two Dimensions	Schur Decomposition	Results	Acknowledgement
00	000	•0	0		
0	000	0	0		

Spectral Methods in Two Dimensions

The basis function $T_5(x)T_3(y)$

Introduction	Spectral Methods	Two Dimensions	Schur Decomposition	Results	Acknowledgemer
00	000	0.	0		
0	000	0	0		

Two Dimensions are Only a Kronecker Harder than One

$$L \cdot \vec{u} = \vec{f}$$

$$A \otimes B = \begin{pmatrix} a_{11}B & a_{12}B & \dots & a_{1n}B \\ a_{21}B & a_{22}B & \dots & a_{2n}B \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1}B & a_{m2}B & \dots & a_{mn}B \end{pmatrix}$$

$$u_{xx} + u_{yy} = f$$

$$(D_2 \otimes (S_1S_0) + (S_1S_0) \otimes D_2) \cdot \vec{u} = \vec{f}$$

Introduction	Spectral Methods	Two Dimensions	Schur Decomposition	Results	Acknowledgements
00	000	00	0		
0	000	•	0		

Domains

 $\begin{array}{ll} \mbox{Problem: Canonical domain is } [-1,1] \times [-1,1] \\ \mbox{Solution: Bilinear Maps!} \end{array}$

$$x = a_1 + b_1 x' + c_1 y' + d_1 x' y'$$
$$y = a_2 + b_2 x' + c_2 y' + d_2 x' y'$$

The Chain Rule is used to transform the differential equations from the quadrilateral to the square.

Two	Dimensions	
00		

Schur Decomposition

How do we get triangles?

Ó

There is no nonsingular transform from a square to a triangle. The solution is to partition the triangle into three quadrilaterals.

Introduction	Spectral Methods	Two Dimensions	Schur Decomposition	Results	Ackno
00	000	00	0		
0	000	0	•		

Schur Complement Matrix

Introduction	Spectral Methods	Two Dimensions	Schur Decomposition	Results	Acknowledgements
00	000	00	0		
0	000	0	0		

Introduction	Spectral Methods	Two Dimensions	Schur Decomposition	Results	Acknowledgeme
00	000	00	0		
0	000	0	0		

Schur Domain Decomposition

Introduction	Spectral Methods	Two Dimensions	Schur Decomposition	Results	Acknowledgements
00	000	00	0		

Acknowledgements

- Dr. Alex Townsend
- Dr. Khovanova, Dr. Etingof, Dr. Gerovitch, and everyone else involved in organizing the PRIMES-USA program
- Dr. Davis and Dr. Monks (ARML coaches)
- My Parents

Spectral Methods

wo Dimensions 0 Schur Decomposition

Results

Acknowledgements

